Here is the sketch of a graph. 1

Circle the equation of the graph.

[1 mark]

$$y = x$$

$$v = -x^2$$

$$y = -x^2 y = -x^3$$

$$y = \frac{1}{x}$$

2

y = 23+2

A graph has equation

 $y = x^3 + a$

where a is an integer.

The graph passes through the point (3, 29)

 $29 = 3^3 + 9$

Draw the graph for values of x from -3 to 3

= 2 (1

[3 marks]

	- 3						
y	- 25	-6	ı	2	3	10	29

3 Here is a sketch of a graph.

Circle the equation of the graph.

k is a constant.

[1 mark]

$$v = kx$$

$$v = k + x$$

$$y = kx$$
 $y = k + x$ $y = k - x$

$$y = \frac{k}{x}$$

4 Circle the letter of the possible sketch graph of $y = x^3 - 4$

cubic graph with y-intercept [1 mark]

5 Erika tries to sketch the graph $y = \frac{1}{x}$ with $x \neq 0$

Make two different criticisms of her sketch.

[2 marks]

Criticism 1 The graph touches the y-axis

Criticism 2 The graph on the left of y-axis should be

below x-axis.

6 (a) Sunil thinks that E and D are linked by the equation $E = \frac{36}{D}$

The graph shows the values of D and E for $2 \le D \le 6$

Choose one point on the graph and state if Sunil's equation is correct for that point.

For point (3,12):
$$E = \frac{36}{3} = 12$$

[1 mark]

Yes. He is right

7 Here is a sketch of a graph.

Circle the possible equation of the graph.

[1 mark]

$$y = x^2 + 1$$
 $y = \frac{1}{x} + 1$ $y = 1 - x^2$